•  
  •  
 

Author Country (or Countries)

India

Abstract

In the present paper, we obtain some approximation properties for the bivariate Bernstein-Durrmeyer operators on a triangle. We characterize the rate of convergence in terms of K−functional and the usual and second order modulus of continuity. We estimate the order of approximation by Voronovskaja type result and illustrate the convergence of these operators to a certain function through graphics using Mathematica algorithm. We also discuss the comparison of the convergence of the bivariate Bernstein-Durrmeyer operators and the bivariate Bernstein-Kantorovich operators to the function through illustrations using Mathematica. Lastly, we study the simultaneous approximation for first order partial derivatives and the shape preserving properties of these operators.

Suggested Reviewers

N/A

Digital Object Identifier (DOI)

http://dx.doi.org/10.18576/amis/110308

Share

COinS